Learn about the Crossed Ethical, Legal and Sociological issues in Personalised Medicine identified from the ERA-PerMed Networking Activity:
Our partners Emmanuelle Rial-Sebbag and Delphine Azéma from Inserm discuss Ethical Legal and Social Aspects of Personalised Medicine in the article "Patients’ Expectations to Personalised Medicine – It Requires Ethical Consideration" by Pernille Tranberg in dataethics.eu


All publications from KidneySign partners listed on PubMed are   available here

Publications from KidneySign partners relevant to the project (presented in alphabetical order):

Argiles A, Siwy J, Duranton F, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One. 2013;8(5):e62837. doi:10.1371/journal.pone.0062837
Bae J, Helldin T, Riveiro M, Nowaczyk S, Bouguelia MR, Falkman G. Interactive Clustering: A Comprehensive Review. ACM Comput Surv. 2020;53(1):1-39. doi:10.1145/3340960
Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010;6(11):643-656. doi:10.1038/nrneph.2010.120
Bouteldja N, Klinkhammer BM, Bülow RD, et al. Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology. J Am Soc Nephrol. 2021;32(1):52-68. doi:10.1681/ASN.2020050597
Brey P, Macnish K, Ryan M. Guidelines for the Ethical Development of AI and Big Data Systems: An Ethics by Design approach. SHERPA. Published online 2020. doi:10.21253/DMU.12301322.V1
Catanese L, Siwy J, Mavrogeorgis E, et al. A Novel Urinary Proteomics Classifier for Non-Invasive Evaluation of Interstitial Fibrosis and Tubular Atrophy in Chronic Kidney Disease. Proteomes. 2021;9(3):32. doi:10.3390/proteomes9030032
Decramer S, Wittke S, Mischak H, et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med. 2006;12(4):398-400. doi:10.1038/nm1384
Delfin-Rossaro A, Chassang G, Cambon-Thomsen A, et al. Ethics and Data Access (F+) Training module (FAIRplus project). https://rise.articulate.com/share/GGh_EjcuIvnbO23NvBu73yEjDio2_7Yb#/
Gajjala PR, Bruck H, Noels H, et al. Novel plasma peptide markers involved in the pathology of CKD identified using mass spectrometric approach. J Mol Med. 2019;97(10):1451-1463. doi:10.1007/s00109-019-01823-8
Glorieux G, Mullen W, Duranton F, et al. New insights in molecular mechanisms involved in chronic kidney disease using high-resolution plasma proteome analysis. Nephrol Dial Transplant. 2015;30(11):1842-1852. doi:10.1093/ndt/gfv254
Hermann J, Brehmer K, Jankowski V, et al. Registration of Image Modalities for Analyses of Tissue Samples Using 3D Image Modelling. Proteomics Clin Appl. 2021;15(1):e1900143. doi:10.1002/prca.201900143
Hermann J, Noels H, Theelen W, et al. Sample preparation of formalin-fixed paraffin-embedded tissue sections for MALDI-mass spectrometry imaging. Anal Bioanal Chem. 2020;412(6):1263-1275. doi:10.1007/s00216-019-02296-x
Jankowski V, Saritas T, Kjolby M, et al. Carbamylated sortilin associates with cardiovascular calcification in patients with chronic kidney disease. Kidney International. Published online November 2021:S0085-2538(21)01034-6. doi:10.1016/j.kint.2021.10.018
Kaye J, Terry SF, Juengst E, et al. Including all voices in international data-sharing governance. Hum Genomics. 2018;12(1):13. doi:10.1186/s40246-018-0143-9
Kerschbaum J, Rudnicki M, Dzien A, et al. Intra-individual variability of eGFR trajectories in early diabetic kidney disease and lack of performance of prognostic biomarkers. Sci Rep. 2020;10(1):19743. doi:10.1038/s41598-020-76773-0
Klein J, Caubet C, Camus M, et al. Connectivity mapping of glomerular proteins identifies dimethylaminoparthenolide as a new inhibitor of diabetic kidney disease. Sci Rep. 2020;10(1):14898. doi:10.1038/s41598-020-71950-7
Laget J, Duranton F, Argilés À, Gayrard N. Renal insufficiency and chronic kidney disease – Promotor or consequence of pathological post-translational modifications. Molecular Aspects of Medicine. Published online February 2022:101082. doi:10.1016/j.mam.2022.101082
Lycke M, Ulfenborg B, Kristjansdottir B, Sundfeldt K. Increased Diagnostic Accuracy of Adnexal Tumors with A Combination of Established Algorithms and Biomarkers. J Clin Med. 2020;9(2). doi:10.3390/jcm9020299
Magalhães P, Pejchinovski M, Markoska K, et al. Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Sci Rep. 2017;7(1):16915. doi:10.1038/s41598-017-17083-w
Marcišauskas S, Ulfenborg B, Kristjansdottir B, Waldemarson S, Sundfeldt K. Univariate and classification analysis reveals potential diagnostic biomarkers for early stage ovarian cancer Type 1 and Type 2. J Proteomics. 2019;196:57-68. doi:10.1016/j.jprot.2019.01.017
Pena MJ, Jankowski J, Heinze G, et al. Plasma proteomics classifiers improve risk prediction for renal disease in patients with hypertension or type 2 diabetes. J Hypertens. 2015;33(10):2123-2132. doi:10.1097/HJH.0000000000000685
Perco P, Pena M, Heerspink HJL, Mayer G, BEAt-DKD Consortium. Multimarker Panels in Diabetic Kidney Disease: The Way to Improved Clinical Trial Design and Clinical Practice? Kidney Int Rep. 2019;4(2):212-221. doi:10.1016/j.ekir.2018.12.001
Prischl FC, Rossing P, Bakris G, Mayer G, Wanner C. Major adverse renal events (MARE): a proposal to unify renal endpoints. Nephrology Dialysis Transplantation. 2021;36(3):491-497. doi:10.1093/ndt/gfz212
Rial-Sebbag E. [Chapter 4. Governing Big Data for Health, national and international issues]. J Int Bioethique Ethique Sci. 2017;28(3):39-50. doi:10.3917/jib.283.0039
Schanstra JP, Zürbig P, Alkhalaf A, et al. Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides. J Am Soc Nephrol. 2015;26(8):1999-2010. doi:10.1681/ASN.2014050423
Sommer J, Seeling A, Rupprecht H. Adverse Drug Events in Patients with Chronic Kidney Disease Associated with Multiple Drug Interactions and Polypharmacy. Drugs Aging. 2020;37(5):359-372. doi:10.1007/s40266-020-00747-0
Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review. Briefings in Bioinformatics. Published online January 28, 2022:bbab569. doi:10.1093/bib/bbab569
Ulfenborg B, Karlsson A, Riveiro M, Andersson CX, Sartipy P, Synnergren J. Multi-assignment clustering: Machine learning from a biological perspective. J Biotechnol. 2021;326:1-10. doi:10.1016/j.jbiotec.2020.12.002
Ulfenborg B, Karlsson A, Riveiro M, et al. A data analysis framework for biomedical big data: Application on mesoderm differentiation of human pluripotent stem cells. PLoS One. 2017;12(6):e0179613. doi:10.1371/journal.pone.0179613
Ulfenborg B. nolas. GitLab. 2021;nolas:https://gitlab.com/algoromics/nolas.
Ulfenborg B. Vertical and horizontal integration of multi-omics data with miodin. BMC Bioinformatics. 2019;20(1):649. doi:10.1186/s12859-019-3224-4
van der Wouden CH, Böhringer S, Cecchin E, et al. Generating evidence for precision medicine: considerations made by the Ubiquitous Pharmacogenomics Consortium when designing and operationalizing the PREPARE study. Pharmacogenet Genomics. 2020;30(6):131-144. doi:10.1097/FPC.0000000000000405
Vlahou A, Hallinan D, Apweiler R, et al. Data Sharing Under the General Data Protection Regulation: Time to Harmonize Law and Research Ethics? Hypertension. Published online February 15, 2021. doi:10.1161/HYPERTENSIONAHA.120.16340
Search